Chromosomes attain a metaphase position on half-spindles in the absence of an opposing spindle pole.

نویسنده

  • R J Leslie
چکیده

To examine the relative roles of chromosomes, spindle poles and microtubules in the formation of the metaphase spindle and metakinesis, I have experimentally placed an extra centrosome-free pronucleus close to a forming bipolar spindle in a living cell. The chromosomes from the extra nucleus induce the formation of an extra half-spindle from one pole of the otherwise normal bipolar spindle with chromosomes positioned at the putative metaphase plate. I conclude that chromosomes determine the location of half-spindles by sustaining a higher than normal density of microtubules. These results are surprising for two reasons: first, because previous in vivo experiments in tissue culture cells show that mono-oriented chromosomes with functional attachments to spindle microtubules do not support half-spindle formation but oscillate unstably or move to one spindle pole. Additionally, the generally accepted view is that chromosomes attain a metastable condition at the metaphase plate as a result of a balance between forces directed to opposite spindle poles. However, our observation that chromosomes on extra half-spindles attain a metastable position in the absence of an opposing spindle pole, suggests that Ostergren's model does not account for metakinesis in sea urchin embryos.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meiotic spindle assembly in Drosophila females: behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein

Mature Drosophila oocytes are arrested in metaphase of the first meiotic division. We have examined microtubule and chromatin reorganization as the meiosis I spindle assembles on maturation using indirect immunofluorescence and laser scanning confocal microscopy. The results suggest that chromatin captures or nucleates microtubules, and that these subsequently form a highly tapered spindle in w...

متن کامل

Mitosis in primary cultures of Drosophila melanogaster larval neuroblasts.

Although Drosophila larval neuroblasts are routinely used to define mutations affecting mitosis, the dynamics of karyokinesis in this system remain to be described. Here we outline a simple method for the short-term culturing of neuroblasts, from Drosophila third instar larvae, that allows mitosis to be followed by high-resolution multi-mode light microscopy. At 24 degrees C, spindle formation ...

متن کامل

UV microbeam irradiations of the mitotic spindle. II. Spindle fiber dynamics and force production

Metaphase and anaphase spindles in cultured newt and PtK1 cells were irradiated with a UV microbeam (285 nM), creating areas of reduced birefringence (ARBs) in 3 s that selectively either severed a few fibers or cut across the half spindle. In either case, the birefringence at the polewards edge of the ARB rapidly faded polewards, while it remained fairly constant at the other, kinetochore edge...

متن کامل

Microtubule assembly and kinetochore directional instability in vertebrate monopolar spindles: implications for the mechanism of chromosome congression.

We have proposed previously a kinetochore motor-polar ejection model for chromosome congression to the metaphase plate where forces generated at the kinetochore are antagonized by away-from-the pole forces generated within each half-spindle on the chromosome arms. This model was based in large part on observations of the behavior of chromosomes on monopolar spindles. In these cells chromosomes ...

متن کامل

Direct kinetochore–spindle pole connections are not required for chromosome segregation

Segregation of genetic material occurs when chromosomes move to opposite spindle poles during mitosis. This movement depends on K-fibers, specialized microtubule (MT) bundles attached to the chromosomes' kinetochores. A long-standing assumption is that continuous K-fibers connect every kinetochore to a spindle pole and the force for chromosome movement is produced at the kinetochore and coupled...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 103 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1992